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About me

* Researcher at Institute of Physics Belgrade

* My research interests:

* Numerical models of protoplanetary discs and planet formation
» Simulations of debris discs and dynamics of small dust grains



Overview of the lectures

* Lecture 1
* (Exo)planets
* Protoplanetary discs
* Protoplanetary discs as accretion discs
* Evolution of dust in protoplanetary discs

* Lecture 2

* Dust growth
Planetesimal formation
Formation of planet cores
Accretion of planet envelopes
How do (exo)planets form?



(Exo)planets



Solar system

Credits: NASA/Ames Research Center/Wendy Stenzel

e ] star

* 8 planets (or more?)

e 9 dwarf planets (or more?)

2 planetesimal belts + Oort cloud + other small bodies...
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Extra-solar systems

TRAPPIST-1 System

Illustration

Credits: NASA/JPL-Caltech
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Super Earths & Mini Neptunes
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Extrasolar planetesimal belts

* One cannot directly detect a

dwarf planet or a planetesimal, y—— P——
but.'. (4x Scale)

Cool Outer Belt

Cool Kuiper Belt

* Planetesimals collide and —
produce small dust grains

* These belts are debris leftover
from planet formation (thus Credits: NASA/JPL-Caltech
also known as debris discs)




How and where do planetary
systems form?



Stars form in fragments of giant cold clouds

Orion nebula. Credit: NASA/ESA/M.
Robberto (Space Telescope Science
Institute/ESA)/Hubble Space Telescope




Stars form surrounded by discs of gas and dust

(but most star-forming
regions aren’t this
violent)

Orion nebula with proplyds.
Credit: ESA/Hubble Space Telescope



These are protoplanetary discs

Artist’s impression of a young star surrounded by a protoplanetary
disc. Credit: ESO/L. Calcada



Protoplanetary discs



Spectral Energy Distribution (SED)
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Resolved observations of dust continuum

Dust continuum emission gallery from
DSHARP program. Credit: ALMA
(ESO/NAQJ/NRAO), S. Andrews et al.;
NRAO/AUI/NSF, S. Dagnello




Gas structure probed through tracer species
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A planet has been detected in one disc!
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Protoplanetary discs are accretion discs
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Protoplanetary disc lifetime

* Young stars lose their discs after a few million years

* Gaseous giants must form within this time!



Main points so far

* Planets form in discs of gas and dust surrounding young stars
* These protoplanetary discs last for a few million years
* During this time material accretes onto the star

* Observations of dust continuum emission and gas tracer species
probe the structure and evolution of protoplanetary discs



Protoplanetary discs as
accretion discs



Thin circumstellar disc

Vertical direction: thermal pressure balances stellar gravity

OP GM,.z

Oz p(rz + 22)3/2

Radial direction: pressure gradient leads to sub-Keplerian rotation

10P

0 = rQf + -
r rK+par



Viscous accretion disc

Viscous disc accretes onto the star: angular momentum is transported outwards, mass
is transported inwards.



Viscous accretion disc

Viscous disc accretes onto the star: angular momentum is transported outwards, mass
is transported inwards.

Viscosity is produced by turbulence!



Viscous accretion disc

Consider a differentially rotating disc as a series of infinitesimal rings and a Newtonian
shear stress of the form:

Q

W,y = puraar
Conservation of angular momentum:

19(r*Q)

r— = w
pur—5— = (VW)
Mass continuity:
dp 10

3¢ T 7, (rpur) =0



Viscous accretion disc

Vertically integrated:
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where M = —27r f_oooo dzpu, is the inwards gas accretion rate, X = f_oooo dzp is the gas

surface density.



Viscous accretion disc

Evolution of the surface density is given by a diffusion equation:
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Self-similar solution of Lynden-Bell & Pringle (1974)



Viscous accretion disc

Parametrization of viscosity, Shakura and Sunyaev (1973) « parameter:



Viscous accretion disc

Steady-state solution:



Viscous accretion disc

Thermal balance: 3

9 .
F = >%00% = —Q*Mf,
87 T s
Midplane temperature:
UTrﬁid = %TmidF

where Tmig = %E/ﬂ



Viscous accretion disc

Standard a-disc model:

¥ m_1/5&_4/5Mi/S(er)3/5r_3/5
pria o< =310~ TO N0 (£ fyg)2/5=33/20
Tia o< £/5a= /5 M2 (£,1) /5 =9/10
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What is the source of the viscosity/turbulence?

Magneto-rotational instability (MRI) (Balbus & Hawley 1991)




Difficulties with MRI

Protoplanetary discs are weakly ionized
cosmic
rays

dead zone

thermal
ionization

active zone



Are there other candidates?

* Under the right conditions, some hydrodynamic instabilities (e.g.
vertical shear instability) also produce turbulence which can transport
angular momentum...

* Non-viscous accretion! Angular momentum may be lost via
magnetic winds.



Protoplanetary discs are also heated by
stellar irradiation

* Disc surface is hit by stellar _
irradiation TN

* Dust absorbs and re-emits N

stellar light \

* Upper layers and outer disc
are primarily heated by stellar NERE
irradiation, not viscous D'Alessio et ariw()1998)
dissipation

Chiang & Goldreich (1997)



Evolution of dust in
protoplanetary discs



Dust grains are subject to gas drag

 Epstein drag regime (but may also enter Stokes regime!)

41T 5
Farag = —?pS UthV
* Friction time scale
muv
Leric =
|Fdrag|

* Dimensionless friction time scale (Stokes number)
Tfric = tfricQK



Vertical settling

e Gas is stationary in the vertical direction
* Dust grains tend towards Keplerian orbits
=> dust grains feel gas drag
=> dust grains settle towards disc midplane
e Dust also vertically mixed by turbulence
* Mathematically described by an advection-diffusion equation



Radial drift of dust

* Recall that gas revolves around the star at sub-Keplerian velocities
* Dust grains tend towards Keplerian velocities

=> dust grains feel gas drag

=> dust grains spiral towards the star




Radial drift of dust leads to concentration of
dust in local pressure maxima

log P




Radial drift of dust leads to concentration of

dust in

ocal pressure maxima

log P

log r Dust continuum emission gallery from
DSHARP program. Credit: ALMA
(ESO/NAOQJ/NRAOQ), S. Andrews et al.;
NRAO/AUI/NSF, S. Dagnello



Dust sublimation lines

Water ice line
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Summary of today’s lecture

* Planets around other stars are numerous and diverse
* Planets form in discs of gas and dust surrounding newly-born stars

* These protoplanetary discs last a few million years, and during that
time they accrete onto the star

* Protoplanetary discs are likely turbulent, which may or may not be
driving accretion onto the star

e Evolution of dust is driven by gas drag
* Dust grains settle vertically and migrate radially in the disc



End of Lecture 1



