2014 Summer School on Elementary Particle Physics

 Petnica Summer Institute
Particle Physics

Basudeb Dasgupta
ICTP, Trieste

UNIVERSAL ORDER OF CREATION

by MAGGIE APPLETON
"If you want to make an apple pie from scratch, you must first create the universe."

Ingredients of the Universe

Group $\rightarrow 1$ \downarrow Perioo		2	3		5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} 18 \\ \hline \begin{array}{c} 2 \\ \mathrm{He} \end{array} \end{gathered}$
1	$\begin{array}{\|l} \hline 1 \\ \mathrm{H} \end{array}$																	
2	$\begin{gathered} \hline 3 \\ \hline \mathrm{Li} \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \end{gathered}$											5 B	$\begin{aligned} & 6 \\ & \text { C } \end{aligned}$	$\begin{aligned} & 7 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 10 \\ & \mathrm{Ne} \end{aligned}$
3	$\begin{aligned} & 11 \\ & \hline \mathrm{Na} \end{aligned}$	$\begin{aligned} & \hline 12 \\ & \mathrm{Mg} \end{aligned}$											$\begin{aligned} & \hline 13 \\ & \text { Al } \end{aligned}$	$\begin{aligned} & \hline \hline 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{aligned} & \hline 15 \\ & \mathrm{P} \end{aligned}$	$\begin{gathered} \hline 16 \\ \mathrm{~S} \end{gathered}$	$\begin{aligned} & \hline 17 \\ & \mathrm{Cl} \end{aligned}$	18 Ar
4	$\begin{gathered} 19 \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{array}{\|l\|} \hline 21 \\ \mathrm{Sc} \\ \hline \end{array}$	$\begin{array}{\|l} 22 \\ \mathrm{Ti} \end{array}$	$\begin{array}{\|c} \hline 23 \\ \mathrm{~V} \end{array}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{array}{\|l} \hline 25 \\ \mathrm{Mn} \end{array}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{array}{\|l} \hline 27 \\ \text { Co } \end{array}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & \hline 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & \hline 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & \hline 34 \\ & \text { Se } \end{aligned}$	$\begin{aligned} & \hline 35 \\ & \mathrm{Br} \end{aligned}$	36 Kr
5	$\begin{aligned} & 37 \\ & \hline \mathrm{Rb} \end{aligned}$	$\begin{aligned} & \hline 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} 39 \\ \hline \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & \hline \hline 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{aligned} & \hline 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & \hline 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & \hline \hline 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & \hline 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & \hline 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & \hline 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} \hline 53 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 54 \\ & \mathrm{Xe} \end{aligned}$
6	$\begin{array}{\|l} \hline 55 \\ \mathrm{Cs} \\ \hline \end{array}$	$\begin{aligned} & \hline 56 \\ & \mathrm{Ba} \end{aligned}$	*	$\begin{array}{\|l\|} \hline 72 \\ \mathrm{Hf} \end{array}$	$\begin{array}{\|l\|} \hline 73 \\ \mathrm{Ta} \\ \hline \end{array}$	$\begin{aligned} & \hline 74 \\ & W \end{aligned}$	$\begin{aligned} & \hline 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & \hline 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \text { Ir } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 78 \\ & \mathrm{Pt} \end{aligned}$	$\begin{aligned} & \hline 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & \hline 80 \\ & \mathrm{Hg} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 81 \\ & \mathrm{TI} \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & \hline 84 \\ & \text { Po } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 85 \\ & \text { At } \end{aligned}$	$\begin{aligned} & \hline 86 \\ & \text { Rn } \\ & \hline \end{aligned}$
7	$\begin{aligned} & \hline 87 \\ & \hline \mathrm{Fr} \end{aligned}$	$\begin{aligned} & \hline 88 \\ & \mathrm{Ra} \end{aligned}$	**	$\begin{array}{\|c} \hline 104 \\ \mathrm{Rf} \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{gathered} 109 \\ M t \end{gathered}$	$\begin{gathered} \hline 110 \\ D s \end{gathered}$	111 Rg	$\begin{gathered} 112 \\ \mathrm{Cn} \end{gathered}$	$\begin{array}{\|l\|} \hline 113 \\ \text { Uut } \end{array}$	$\begin{gathered} 114 \\ \mathrm{FI} \end{gathered}$	\|lup	$\begin{array}{\|c} 116 \\ \mathrm{Lv} \end{array}$	$\begin{aligned} & 117 \\ & \text { Uus } \end{aligned}$	$\begin{aligned} & 118 \\ & \text { Uuo } \end{aligned}$

*	$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{array}{\|l\|} \hline 61 \\ \text { Pm } \end{array}$	$\begin{aligned} & 62 \\ & \hline 5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 63 \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	66	67 Ho	$\begin{aligned} & 68 \\ & \text { Er } \end{aligned}$	$\begin{aligned} & \hline 69 \\ & \text { Tm } \end{aligned}$	$\begin{array}{\|l\|} \hline 70 \\ \mathrm{Yb} \end{array}$	Lu
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa		Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

New Improved Ingredients

4 Golden Lessons

- No one knows everything, and you don't have to.
- Go for the messes - that's where the action is.
- Forgive yourself for wasting time.
- Learn the history of science.

Steven Weinberg (2003)

Structure of the lectures

- Lecture 1: An overview of particle physics
- General Motivation
- Folk-history of Particle Physics
» e, p, n
" photons
» Positron, ...
» from hadrons and mesons to quarks
" neutrinos, ...
» W/Z bosons, Higgs
- Present-day understanding of the Universe
- What may lie ahead

Structure of the lectures

- Lecture 2: Basic tools and techniques
- Preliminaries
- Basic observables
- Experiments
» sources: why high-energy, high-luminosity, highweirdness
" detectors: calorimetry, particle-id, ...
» software: triggers, cuts, statistics
- Theory
» Representing particle, interactions, and processes
» Scattering and decay
» Some examples

Structure of the lectures

- Lecture 3: Guided by Symmetry
- Energy : Neutrinos
- Charge : Global/Local symmetry
- Spin : Neutrinos
- Isospin : Flavor
- Pauli-antisymmetry: Color
- Asymptotic freedom and Confinement : Color
- Parity, CP : Weak interaction phenomena
- Gauge symmetry : Z boson
- Gauge symmetry: Higgs boson

Units

We will often make use of natural units. This means that we work in a system where the action is expressed in units of Planck's constant:

$$
\hbar \approx 1.055 \times 10^{-34} \mathrm{Js}
$$

and velocity is expressed in units of the light speed in vacuum:

$$
c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

In other words we often use $\hbar=c=1$.
This implies, however, that the results of calculations must be translated back to measureable quantities in the end. Conversion factors are the following:

quantity	conversion factor	natural unit	normal unit
mass	$1 \mathrm{~kg}=5.61 \times 10^{26} \mathrm{GeV}$	GeV	GeV / c^{2}
length	$1 \mathrm{~m}=5.07 \times 10^{15} \mathrm{GeV}^{-1}$	GeV^{-1}	$\hbar c / \mathrm{GeV}$
time	$1 \mathrm{~s}=1.52 \times 10^{24} \mathrm{GeV}^{-1}$	GeV^{-1}	\hbar / GeV
unit charge	$\mathrm{e}=\sqrt{4 \pi \alpha}$	1	$\sqrt{\hbar c}$

A Folk History of Particles

Electrons

- 1700s to 1900: Many experiments with ionized gases. Some kind of "rays" that were deflected by E and B fields
- 1897-1903: JJ Thomson after many years of experiments on different gases concludes that mass/charge was constant, small, and the rays were produced by most substances.

- 1906: Millikan confirms that charge is indeed quantized

Nucleus

1910: Geiger, Marsden, Rutherford discover that the positive charge in the atom is concentrated

Protons

1919: The "H" particles that are emitted by all substances when bombarded by alpha particles, must be a common constituent of all elements, and must be the protons

Rutherford

Neutron

Ftg. 1.

1932: Bombarding Beryllium with alpha particles produces invisible rays that however can knock-off protons from wax. These rays have a lot of energy, and must be carried by a particle as massive as the proton. This is the neutron.

Chadwick

Photon

- 1900: Planck's Law E=hv
- 1905: Einstein's Photoelectric effect E = hv - W
- 1923: Compton Scattering

Positron

Curvature in B field tells momentum and charge

The particle had mass = electron, but positive charge! Anderson (1932), just as predicted by Dirac (1930)

Antiproton discovered by Segre and Chamberlain (1955)

Energy Loss Rate

What holds the nucleus?

If there is a new force that holds the protons in the nucleus, it must be stronger than the electromagnetic force and be limited to the size of the nucleus.

From this, a new particle of mass $\sim 200 \mathrm{MeV}$ was predicted.

Discovering the muon

Measure energy loss rate, and seen that there are particles of mass $\sim 100 \mathrm{MeV}$ that do not lose much energy

These were initially thought to be pions, but are muons.

Who ordered that?

Discovering the charged pions

Pions decayed into a muon, and so thus were slightly more massive (140 MeV)

Usually not seen at sea level

Neutral Pions

Can you guess what's happening here?

Neutral Pions

Strangeness

Some particles are always produced in pairs, and by strong interactions.

On the other hand, they appear to decay weakly.

This is strange.

Resonances

The Particle Zoo

First seen in	Reported events	Current interpretation
	Mesons	
$1943(1946)$	Charged particle with $\mathrm{M} \sim 500 \mathrm{MeV}$	
1947	$\theta^{0} \rightarrow \pi^{+} \pi^{-}, \mathrm{V}^{0}{ }_{2} \rightarrow \pi^{+} \pi^{-}$	K^{+}
1947	$\theta^{+} \rightarrow \pi^{+}($neutral $), \chi^{+} \rightarrow \pi^{+}$(neutral)	$\mathrm{K}^{0} \rightarrow \pi^{+} \pi^{-}$
1949	$\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$	$\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0}$
1951	$\mathrm{~K}^{+} \rightarrow \mu^{+}($neutrals $)$	$\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
		$\mathrm{K}^{+} \rightarrow \mu^{+} v$
	Baryons	
1950	$\mathrm{~V}_{1}^{0} \rightarrow \mathrm{p} \pi^{-}$	
1953	$\mathrm{~V}^{+} \rightarrow \mathrm{p}$ (neutrals)	$\Lambda \rightarrow \mathrm{p} \pi^{-}$
$?$	$\Lambda^{+} \rightarrow \mathrm{n} \pi^{+}$	$\Sigma^{+} \rightarrow \mathrm{p} \pi^{0}$
(1953)	$\mathrm{X}^{-} \rightarrow \mathrm{V}^{0}{ }_{1} \pi^{-}$	$\Sigma^{+} \rightarrow \mathrm{n} \pi^{+}$

8-fold way

There are patterns in mesons and baryons

A Bold Prediction

The Omega-Minus

Quarks

All meson/baryon multiplets can be made using these basic "triangles"
Neutron/Proton has substructure!

Charmonium

Heavy quarks

Bottomonium
Top quarks

Gluons

Neutrinos

Beta decays had already shown that there ought to be a new particle

Neutrino Heartbeat

Followed by detection of all 3 flavors of neutrinos, leptons

W, Z bosons

Higgs Boson

Experiment CMS

Experiment ATLAS

What we know today

Particle Physics in the Sky

We have reached a milestone...

- What are the fundamental building blocks?
- What are their interactions?
- Why are there 3 generations? Masses?
- Why matter > antimatter?
- What is Dark Matter/Energy?
- Why is the Standard Model, the way it is?
but there is a long road ahead.

Structure of the lectures

- Lecture 2: Basic tools and techniques
- Preliminaries
- Basic observables
- Experiments
» sources: why high-energy, high-luminosity, highweirdness
" detectors: calorimetry, particle-id, ...
» software: triggers, cuts, statistics
- Theory
» Representing particle, interactions, and processes
» Scattering and decay
» Some examples

Structure of the lectures

- Lecture 3: Guided by Symmetry
- Energy : Neutrinos
- Charge : Global/Local symmetry
- Spin : Neutrinos
- Isospin : Flavor
- Pauli-antisymmetry: Color
- Asymptotic freedom and Confinement : Color
- Parity, CP : Weak interaction phenomena
- Gauge symmetry : Z boson
- Gauge symmetry: Higgs boson

References

- D.J Griffiths's, Elementary Particle Physics
- http://www.phys.ufl.edu/~korytov/phz6355/ (esp. for historical account)
- Halzen and Martin (for most of Lectures 2,3)
- http://www.nikhef.nl/~i93/Master/PP1/2011/ Lectures/Lecture.pdf

